
THE LXI IVI PROGRAMMING MODEL FOR SYNCHRONIZATION
AND TRIGGERING

Lynn Wheelwright

3751 Porter Creek Rd
Santa Rosa, California 95404

707-579-1678
lynnw@sonic.net

Abstract - The LXI Standard provides three
synchronization and trigger methodologies in
addition to what system designers are familiar
with on rack and stack instruments:

• A high speed LVDS trigger bus that is
eight lanes wide

• LAN events and triggers which can be
used in place of wires or in addition to
them

• Very accurate absolute time keeping,
time stamping, and time based triggers
using IEEE 1588 clocks

An IVI programming model for controlling
these methodologies is explored and an
example measurement scenario presented
based on the use of synthetic instruments
working together to make a stimulus-response
measurement. The sample code presented
shows the ease with which a test engineer can
switch between the LXI trigger lines and the
equivalent LAN trigger mechanism. Logic
models and a state machine example are
presented describing necessary arming,
triggering, and event generation logic.
Tradeoffs between hardware and software
implementations are outlined and all of these
models are wrapped together to illustrate what
is needed in an LXI device to use these
capabilities.

INTRODUCTION

Historically, instruments have generally provided
triggering and synchronization that matched the
intended use for the measurement capability
provided. This led to many varieties of triggering
and many different capabilities associated with
each type of trigger. Naturally, for each of these
different types of triggering and synchronization a

different and unique set of programming
commands was developed. In order to achieve
some semblance of order and transfer of learning
to test system program development, the IVI
(Interchangeable Virtual Instruments) Foundation
was established. With its concept of instrument
classes and the notion of inherent capabilities that
each instrument’s programming interface should
support, the stage was set for further
improvements in test system architecture.

The LXI (LAN Extensions for instruments)
standard brings both new triggering capability as
well as a unified programming model for the
various types of triggering found within a test
system. In addition, using Ethernet as the
communication and control mechanism allows test
system designers to address difficult
measurement scenarios (such as large physical
devices or distributed measurement problems)
with greater ease. The new capabilities are:

1. An eight lane wide improved hardware
trigger bus using LVDS technology. It can
handle higher speed signals and provide
better noise immunity.

2. An Ethernet signaling protocol that
matches up to the improved hardware
trigger bus so that measurement
scenarios requiring greater separation
among the measuring devices, or that
don’t necessarily need the ultimate in
speed can be more easily implemented.

3. Very accurate time base synchronization
among measuring devices utilizing IEEE
1588. This allows each device to
maintain accurate time with respect to all
of the other devices in the system. Based
on this, very accurate time based
triggering is possible for large numbers of
measuring devices. This is also the basis

for coupling accurate timestamps to data
so that correlations among many
instruments’ results can be computed.

EXAMPLE MEASUREMENT SCENARIO

For illustration purposes, let’s examine a stimulus
response measurement using synthetic modular
instruments as the measurement hardware. The
device under test is an amplifier that needs to be
checked for distortion over its operating range
using a digitally modulated test signal of 550
microsecond pulses. Each pulse is 2 dB lower
than its predecessor covering a dynamic range of
90 dB. Each amplifier is tested over 101 equally
spaced frequency points between 2 GHz and 3
GHz. Our test assets are:

1. An arbitrary waveform generator.
2. An up converter.
3. A down converter.
4. A digitizer.

A block diagram of how the test assets may be
connected is shown in figure 1. The trigger
connections may be implemented using either the
LXI trigger bus, or Ethernet signaling.

Arb WG Up Converter

DUT

DigitizerDown Converter

LXI-1 | LAN-1

LXI-2 | LAN-2

LXI-3 | LAN-3

LXI-4 | LAN-4

Figure 1. Block Diagram

The test signal is created in the arbitrary
waveform generator and routed to the up
converter where it is translated up in frequency.
The output of the up converter is routed to the
input of the DUT. After passing through the DUT,
the signal is routed to the down converter where it
is translated down to a frequency with in the range
of the digitizer. The digitizer samples the
incoming signal for use by the test program.

The synchronization or trigger signals (denoted in
blue on the diagram), allow the modules to
synchronize their operations as follows:

1. The digitizer will use an internally
generated signal based on the rising
edge of the input signal to start its
acquisition.

2. The digitizer shall wait for both the up
and down converters to settle before
entering the ‘Waiting for Trigger’ state.

3. Upon entering the ‘Waiting for Trigger’
state, the digitizer shall signal the
arbitrary waveform generator to output
the test signal.

4. When the acquisition is complete, the
digitizer transmits the data to the
controller and signals the up and down
converters to move to the next frequency.

Since the digitizer has the most interactions with
other modules, let’s examine the trigger logic used
to accomplish this (see figure 2). Here we see the
symmetrical layout of the LXI trigger bus and the
Ethernet signaling.

In this top level view, event signals are received
from the left via the LXI Trigger Bus or the
network interface (UDP port listener and TCP
socket listeners). The LAN0..7 input registers
capture the values of the event signals received
over the network for use by the Arm or Trigger
logic. This logic determines which signals the
Arm-Trigger State Machine uses once a
measurement sequence has been initiated by the
module controller. The state machine is
responsible for starting the triggered action and
notifying other entities of the progress of the
measurement sequence. The Event logic
monitors the signals from the state machine (and
other sources as appropriate) and is responsible
for sending events out over the LXI Trigger Bus or
over the network.

While it is possible that all of these pieces could
be implemented totally in hardware or totally in
software, it is expected that most implementations
will be a mixture. This would be typical of
modules requiring tight timing tolerances or fast
response to a trigger—especially when received
over the LXI Trigger Bus. For the purposes of this
example the items in green are assumed to be
software and the items in blue and yellow are a
mixture of hardware and software. In order to
issue network events the hardware must be
capable of notifying the software to initiate the
transmission. Typically, connecting the
appropriate signals to the processor’s interrupt
circuitry enables this.

As we look at a flow chart in figure 3 of the Arm-
Trigger state machine, the sections are color
coded for easier identification. In this illustration
of a digitizer, all of these sections are needed in

Figure 2. Trigger Logic Top Level View

order to perform the example measurement.
Other modules such as the Up Converter or Down
Converter, may not need the Arm portion of the
state machine since the only triggerable action
may be to step the frequency as part of a
frequency sweep. Before leaving out sections of
the state machine, be sure to evaluate all of the
use cases for the module.

This flow chart is based on the SCPI [1] trigger
state machine model. One feature to be aware of
is that it is possible to stack multiple Arm sections
and multiple Trigger sections on top of each other
if the application warrants it (a logic analyzer
comes to mind as a more complex example of
triggering where this might be done).

Figure 3. Digitizer Trigger State Machine Model

UDP Port Listener

TCP Socket Listener LA
N0

..7
In

pu
t R

eg
is

te
r

Arm
Trigger
State

Machine

Arm Logic

Trigger Logic
Event Logic

LXI Trigger Bus In LXI Trigger Bus Out

LAN Event Sender

Triggered Action

LVDS Drivers LVDS Receivers

UDP Port Listener

TCP Socket Listener LA
N0

..7
In

pu
t R

eg
is

te
r

UDP Port Listener

TCP Socket Listener LA
N0

..7
In

pu
t R

eg
is

te
r

Arm
Trigger
State

Machine

Arm Logic

Trigger Logic
Event Logic

Arm
Trigger
State

Machine

Arm Logic

Trigger Logic

Arm
Trigger
State

Machine

Arm Logic

Trigger Logic
Event Logic

LXI Trigger Bus In LXI Trigger Bus Out

LAN Event Sender

Triggered Action

LVDS Drivers LVDS Receivers

Event
Logic

TriggerCounter >= End
TriggerCounter = 0Trigger:

WaitingForTrigger = true

Trigger Event Detector

Wait: trigger delay

WaitingForTrigger = false
TriggerCounter++

Trigger Logic

N
Y

Measure: Measuring = true | Acquire data | Measuring = false

ArmCounter >= End

ArmCounter = 0
ArmClearArm:

WaitingForArm = true

Arm Event Detector

Wait: arm delay

ArmCounter++

Arm Logic

N
Y

WaitingForArm = false
ArmClear

Init:Immediate
+

Init:Cont == On

Init:Cont == On

Idle:

Initiated:

Sweeping = true Sweeping = false

N

N

Y

Y
OperationComplete = false

OperationComplete = true

Event
Logic

TriggerCounter >= End
TriggerCounter = 0Trigger:

WaitingForTrigger = true

Trigger Event Detector

Wait: trigger delay

WaitingForTrigger = false
TriggerCounter++

Trigger Logic

N
Y

TriggerCounter >= End
TriggerCounter = 0Trigger:

WaitingForTrigger = true

Trigger Event Detector

Wait: trigger delay

WaitingForTrigger = false
TriggerCounter++

Trigger Logic

N
Y

Measure: Measuring = true | Acquire data | Measuring = falseMeasure: Measuring = true | Acquire data | Measuring = false

ArmCounter >= End

ArmCounter = 0
ArmClearArm:

WaitingForArm = true

Arm Event Detector

Wait: arm delay

ArmCounter++

Arm Logic

N
Y

WaitingForArm = false
ArmClear

ArmCounter >= End

ArmCounter = 0
ArmClearArm:

WaitingForArm = true

Arm Event Detector

Wait: arm delay

ArmCounter++

Arm Logic

N
Y

WaitingForArm = false
ArmClear

Init:Immediate
+

Init:Cont == On

Init:Cont == On

Idle:

Initiated:

Sweeping = true Sweeping = false

N

N

Y

Y
OperationComplete = false

OperationComplete = true

Init:Immediate
+

Init:Cont == On

Init:Cont == On

Idle:

Initiated:

Sweeping = true Sweeping = false

N

N

Y

Y
OperationComplete = false

OperationComplete = true

While this diagram shows various interesting
state machine signals connecting to the Event
logic, there are other signals which one might
also wish to route onto the LXI Trigger Bus or
send as LAN Events. This might include
synchronization clocks, cross routing LXI Trigger
Bus signals, or mapping the trigger bus to LAN
events, etc. The only requirement for these
signals is that they are connected to the Event

logic so that they can be programmatically
routed in a common interface.

Figure 4 shows the relationships among the
state machine signals as it sequences through a
measurement. Due to the looping capabilities of
the various sections of the state machine, it is
possible to have several levels of repetition (as
denoted by braces around groups of signals).

Figure 4. Trigger State Machine Signal Relationships

These signals are referenced in the
programming example and the Arm, Trigger and
Event logic diagrams to follow. Figures 5 and 6
are the Arm logic and a pictorial representation
of the programming interface. Figures 7 and 8
are the Trigger logic and its programming
interface. Figures 9 and 10 are the Event logic
and programming interface.

Figure 5. Arm Logic

The Arm logic provides the ability to selectively
enable any of the inputs as well as selections for
edge or level sense and positive or negative
slope (or level). This logic includes the
capability of OR summing as well as AND
summing for those cases when a measurement
may be initiated from multiple sources
independently.

The delay built into these
models is to compensate
for electrical delay
differences between the
arm signal path and the
signal path through the
device under test. There
are devices such as narrow
band crystal filters that
have significant delay that
must be taken into account
in order to make valid
measurements.

Figure 6 is a representation

of an IVI-COM interface for this logic. The

OperationComplete

Sweeping

WaitingForArm

WaitingForTrigger

Measuring
Settling

May Occur multiple times

Input (LXI0..7 | LAN0..7)

Edge Bit

Enable Bit

Slope Bit
D—FF

Edge Detector

Arm Clear
(see notes)

Logic for Each Input

WaitingForArm

Delay

Mux

Or Enable

D
elay L

ine

Delay
Slope
Configure()
Filter

LXI0..7 | LAN0..7

Delay
Slope
Configure()
Filter

LXI0..7 | LAN0..7

Clock

TimeSeconds
TimeFraction
Period
RepeatCount
Configure()

Clock

TimeSeconds
TimeFraction
Period
RepeatCount
Configure()

External

Delay
Level
Slope
Configure()

External

Delay
Level
Slope
Configure()

TRIGGER
Add(“name”)
Remove(“name”)
Count
Name(Index)
Item(“name”)
Clock
External
Source
TriggerCount

TriggerTRIGGER
Add(“name”)
Remove(“name”)
Count
Name(Index)
Item(“name”)
Clock
External
Source
TriggerCount

Trigger

mapping of the methods and properties onto the
logic can be readily seen.

Figure 6. IVI-COM Arm Interface

The Arm, Trigger, and Event interfaces are
designed to be extensible so that more LAN
based items may be added at runtime when
needed. This is the purpose of the Add and
Remove methods.

Figure 7. Trigger Logic

The Trigger logic (above) is a bit simpler than
the Arm logic. This is mainly because we select
only one trigger at a time, and most triggers
happen on an edge. In some cases, where we
want to OR together events and use the result to
trigger the module, this can be done by using
the OR summing in the Arm logic and selecting
an Immediate trigger in the trigger block. A
similar technique can be used for trigger gating
(controlling the acquisition process with the level
of a signal). All that is needed to set the Edge

property to false in the Arm logic and again
select the Immediate trigger in the Trigger logic.

For both Arm and Trigger logic,
external triggers without level
attributes may be treated in the
same repeated capability group
as LAN and LXI triggers. The
trigger interface in figure 8
illustrates the case where the
external triggers do have a
settable level attribute.

The last major block is the
Event logic. It is responsible for
routing signals to the
appropriate Event transmitter
(either LXI Trigger Bus line or a
LAN event packet). All signals
(not just signals from the Arm-
Trigger state machine) which

are intended to be utilized for sending events or
routed to the LXI Trigger Bus, need to be
connected to the input multiplexers in the Event
logic shown in figure 9.

Also included in this logic is the ability to invert

the signal. The Enable signal is a
three state signal—Off, On, and
WireOr. This is applied to both the
LAN and the LXI trigger bus outputs.
In the case of LAN events in the
WireOr mode, this effectively gives
the test system programmer the
ability to select which edge of the
signal to use to generate an event
(thereby reducing the LAN traffic by
a factor of two). Note, while the
analogy of wired-or logic works both
on LAN and the LXI Trigger Bus, the
use of negative logic to achieve a
wired-and function is very
problematic over LAN and is not

 Figure 8. IVI-COM Trigger Interface

Edge
Enable
Slope
Configure()
Filter

LXI0..7 | LAN0..7

Edge
Enable
Slope
Configure()
Filter

LXI0..7 | LAN0..7

Arm
Add(“name”)
Remove(“name”)
Count
Name(Index)
Item(“name”)
Clock
External
ArmCount
Delay
DisableAll()
OrEnable

ArmArm
Add(“name”)
Remove(“name”)
Count
Name(Index)
Item(“name”)
Clock
External
ArmCount
Delay
DisableAll()
OrEnable

Arm

Clock

TimeSeconds
TimeFraction
Period
RepeatCount
Enable
Configure()

Clock

TimeSeconds
TimeFraction
Period
RepeatCount
Enable
Configure()

External

Edge
Enable
Level
Slope
Configure()

External

Edge
Enable
Level
Slope
Configure()

Legend:
Property
Read Only Property
Method
Interface Pointer (Property)
Interface

Trigger

WaitingForTrigger

Input (LXI0..7 | LAN0..7)

Slope Bit

Mux

Trigger
Select

D—FF
Edge Detector

Logic for Each Input

Immediate

Note: whether a 1588 clock trigger
(alarm) needs this logic depends on the
clock circuitry. With proper design it
can be connected directly to the trigger
multiplexer.

Trigger

WaitingForTrigger

Input (LXI0..7 | LAN0..7)

Slope Bit

Mux

Trigger
Select

D—FF
Edge Detector

Logic for Each Input

Immediate

Note: whether a 1588 clock trigger
(alarm) needs this logic depends on the
clock circuitry. With proper design it
can be connected directly to the trigger
multiplexer.

Input (LXI0..7 | LAN0..7)

Slope Bit

Input (LXI0..7 | LAN0..7)

Slope Bit

Mux

Trigger
Select

D—FF
Edge Detector

Logic for Each Input

Immediate

Note: whether a 1588 clock trigger
(alarm) needs this logic depends on the
clock circuitry. With proper design it
can be connected directly to the trigger
multiplexer.

supported in this model. Instead, use
the AND capability in the Arm logic and
route each event source to a different
input.

The Event interface diagram in figure 10
shows how the methods and properties
are mapped onto the logic.

Figure 9. Event Logic

Figure 10. IVI-COM Event

Interface

SAMPLE CODE IN C#

// tell the digitizer to output WaitingForTrigger on LXI1—tell Arb to use LXI1 to trigger.
Digitizer.Events.Item(“LXI1”).Configure(WaitingForTrigger, ””, On, Positive);
Arb.Trigger.Item(“LXI1”).Configure(0, Positive);
Arb.Trigger.Source = “LXI1”;

// tell digitizer to output WaitingForArm falling edge as trigger for up and down converters
Digitizer.Events.Item(“LXI2”).Configure(WaitingForArm, ””, On, Negative);
UpConverter.Trigger.Item(“LXI2”).Configure(0, Positive);
UpConverter.Trigger.Source = “LXI2”;
DownConverter.Trigger.Item(“LXI2”).Configure(0, Positive);
DownConverter.Trigger.Source = “LXI2”;

// tell up-converter to output Settling on LXI3 for use by digitizer
UpConverter.Events.Item(“LXI3”).Configure(Settling, ””, On, Negative);
Digitizer.Arm.Item(“LXI3”).Configure(true, true, Positive);

// tell down-converter to output Settling on LXI4 for use by digitizer
DownConverter.Events.Item (“LXI4”).Configure(Settling, ””, On, Negative);
Digitizer.Arm.Item(“LXI4”).Configure(true, true, Positive);

// load signal file into arb and get it ready to go
…
// setup rest of digitizer parameters (acquisition length, SignalLevel trigger, etc.)
…
// start digitizer - acquire 101 signal packets
Digitizer.Arm.ArmCount = 101;

Mux

Source
Select

Mux

Source
Select

LXI0..7 | LAN0..7

Slope Bit
Line

Driver

Logic for Each Output

Enable

Source
DestinationPath
Enable
Slope
Configure()

LXI0..7 | LAN0..7 | Data | Error | …

Source
DestinationPath
Enable
Slope
Configure()

LXI0..7 | LAN0..7 | Data | Error | …

LxiEvents
Add(“name”)
Remove(“name”)
Count
Name(Index)
Item(“name”)
DisableAll()

LxiEventsLxiEvents
Add(“name”)
Remove(“name”)
Count
Name(Index)
Item(“name”)
DisableAll()

LxiEvents

Digitizer.Initiate();
// digitizer will now wait until it sees Settled from the up and down converters.

// setup frequencies for up and down converter
UpConverter.Frequency.Sweep.Configure(2e9, 3e9, 10e6);
DownConverter.Frequency.Sweep.Configure(2e9, 3e9, 10e6);

// as soon as both converters settle, the digitizer will trigger the arb and start measuring

// loop and read back data
double [,] data = new double[101, 10000];
for(int index = 0; index <=100; index++) data[index] = Digitizer.Trace.Fetch();
// Done

The above code example uses the LXI Trigger
Bus for measurement synchronization. To
modify this code for LAN triggering simply
requires replacing the string “LXI” with “LAN” in
all instances highlighted in violet and underlined
above. This symmetry between the LXI Trigger
Bus and LAN triggering illustrates the simplicity
of using the proposed arm and trigger interfaces
in a traditional functional test scenario.

For other scenarios, having an accurate time of
day clock based on IEEE 1588 for triggering
allows the additional capability of simultaneously
triggering hundreds or thousands of
measurement devices with an accuracy in the
tens of nanoseconds. The combination of all of
these triggering methods enables the test
system designer to deal with a wider range of
measurement issues in a consistent and straight
forward manner.

Some rules of thumb for selecting which trigger
resources to use include:

• For tight timing requirements needing
hard wired signals within a test system,
the LXI Trigger Bus is recommended.

• If the timing requirement accuracy need
is a few tens of nanoseconds, or the
measurement hardware is widely
dispersed, then triggering based on
IEEE 1588 clocks is a viable solution.

• If the timing and synchronization
requirements can tolerate a latency of
tens to a few hundred microseconds (or
greater), LAN triggering is a very
convenient solution.

SUMMARY

The example measurement illustrates just a few
of the triggering and synchronization capabilities
that can be addressed by the LXI triggering
facilities. It was chosen because it is typical of
measurements made in functional test systems.
The capability and flexibility of the LXI triggering
interfaces can also be applied to data acquisition
and monitoring situations as well.

A key element in the design of the LXI trigger
interfaces, is that the use of the LXI Trigger Bus
and the LAN triggers should be as similar as
possible. The reason for this is so that test
system programmers can switch between the
two easily and quickly as their needs change—
thus allowing the same programming techniques
to address a wider range of situations.

Likewise, standardizing the trigger state
machine names used in the interfaces improves
portability and shortens test system
development time. Lastly, the extensible nature
of the LAN triggering and events interfaces
allows the system designer to add logical trigger
channels on an as-needed basis.

REFERENCES

[1] Standard Commands for Programmable
Instrumentation (SCPI) Consortium, Volume 2:
Command Reference. 1999, pp. 24-1 to 24-4.
http://www.scpiconsortium.org/SCPI-99.pdf

Copyright © 2005 Institute of Electrical and Electronics Engineers, Inc.

Used with permission

